NOMBRE: MÉTODOS NUMÉRICOS

CLAVE: O

CICLO: 1-2 SEMESTRE

PERFIL DEL DOCENTE: DOCTOR EN CIENCIAS (FÍSICO/MATEMÁTICAS)

HRS./SEM.: 4 (2 Hrs. Aula y 2 Hr. En el Laboratorio)

Objetivo: Que el estudiante adquiera la habilidad y capacidad para resolver problemas numéricos que surgen en las aplicaciones utilizando herramientas computacionales como FORTRAN, MATLAB y MATHEMATICA.

- 1. **Sistemas numéricos**. Aritmética con un número finito de dígitos. Bases binarias y decimales. Sistema numérico de punto flotante. Precisión simple y doble. Pérdida de precisión. Propagación de errores. Problemas mal condicionados.
- 2. **Fortran90.** Notación. Líneas y declaraciones. Tipos de variables. Expresiones. Arreglos. Declaraciones de asignación, de control y de entrada/salida. Sistema de entrada/salida. Estructura de archivos. Programas, subrutinas y funciones. Librerías. Sistema operativo y Fortran. Compilación y ejecución. Errores comunes.
- 3. **Matlab y Mathematica**. Tipos y dimensión. Subíndices. Operaciones. Matrices y vectores. Ciclos y condicionales. Submatrices. Funciones internas. Funciones externas. Interacción con el sistema operativo. Gráficos y su manejo.
- 4. **Aproximación.** Interpolación de Hermite. Splines. Mínimos cuadrados con polinomios. Funciones ortogonales. Polinomios trigonométricos. Funciones racionales. Laboratorio de cómputo.
- 5. **Sistemas de ecuaciones**. Sistemas lineales. Factorización *LU*. Eigenvalores. Inversa y Pseudoinversa. Normas matriciales. Sistemas no lineales. Punto fijo para varias variables. Método de Newton. Método de descenso rápido. Laboratorio de cómputo.
- 6. **Transformada rápida de Fourier y Wavelets**. Transformada discreta de Fourier. Factorización raíz de 2. Operadores mariposa. TRF en varias variables. Ventanas y escalas. Funciones base. Haar wavelets. Transformada wavelet discreta. Análisis de frecuencias. Laboratorio de cómputo.
- 7. **Problemas diferenciales**. Diferenciación e integración numérica. Diferencias finitas. Valores a la frontera. Método del elemento finito. Aproximación de Rayleigh-Ritz. Polinomios a trozos. Elementos finitos triangulares y rectangulares. Ecuaciones diferenciales parciales. Problemas elípticos. Laboratorio de cómputo.

Bibliografía:

- [1] Richard L. Burden and J. Douglas Faires, Análisis Numérico, Octava Edición, I. T. P. Latin America, 2001.
- [2] S. Conte and C. deBoor, Elementary Numerical Analysis, McGraw-Hill, 1980.
- [3] A. Kharab and R. Guenther, *An Introduction to Numerical Method. A MATLAB Approach*, Second Edition, Chapman & Hall/CRC, 2006.
- [4] Y. Kwon and H. Bang, The Finite Element Method Using MATLAB, Second Edition, CRC Press, 2000.
- [5] O. C. Zienkiewicz and R. L- Taylor, *The Finite Element Method. Volume 1. The Basis*, 5th Edition, Butterworth-Heinemann, 2000.
- [6] M. C. Suarez A. http://www.fismat.umich.mx/~marioc/
- [7] E. Becker, G. Carey and J. Tinsley, Finite Elements, An Introduction, Volume I, Prentice-Hall, 1981.
- [8] W. H. Press, Saul A. Teukolsky, William T. Vetterling and Brian P. Flannery, *Numerical Recipes in Fortran* 90, Cambridge University Press, 1996.
- [9] S. Nakamura, Análisis numérico y visualización gráfica con Matlab, Prentice-Hall, 1992.
- [10] S. Wolfram, Mathematica, Cambridge University Press, 1999.

Técnicas de enseñanza sugeridas

Exposición oral	(X)
Exposición audiovisual	(X)
Ejercicios dentro de clase	(X)
Seminarios	(X)
Lecturas obligatorias	(X)
Trabajos de investigación	(X)
Prácticas en taller o laboratorio	(X)
Prácticas de campo	()
Otras:	()

Elementos de evaluación sugeridos

Exámenes parciales	(Χ)
Exámenes finales	(Χ)
Trabajos y tareas fuera del aula	(Χ)
Participación en clase	(Χ)
Asistencia a prácticas	(Χ)
Otras:	()

Metodología: Habrá exposiciones por parte del profesor utilizando tanto el pizarrón como acetatos, diapositivas, cañón o videos. También los alumnos participarán en la exposición de temas que el profesor considere pertinentes. En todo caso se promoverá la discusión y participación de los estudiantes.

Evaluación:

Se evaluará con un porcentaje de ponderación del 30% de los exámenes parciales, 20% de prácticas en el laboratorio, el 10% de un examen final, el 20% de los trabajos y tareas, el 10% de la participación en clase, y el 10% del reporte de las lecturas obligatorias. Todos estos elementos deberán retroalimentar la práctica docente para mejorar la eficiencia y disminuir la reprobación.